Exercise 8

(a) Write $(x, y)+(u, v)=(x, y)$ and point out how it follows that the complex number $0=(0,0)$ is unique as an additive identity.
(b) Likewise, write $(x, y)(u, v)=(x, y)$ and show that the number $1=(1,0)$ is a unique multiplicative identity.

Solution

Part (a)

$$
(x, y)+(u, v)=(x, y)
$$

Adding the two complex numbers on the left side, we get

$$
(x+u, y+v)=(x, y)
$$

In order for equality to hold, the real and imaginary parts of both sides must be equal.

$$
\left.\begin{array}{rl}
x+u & =x \\
y+v & =y
\end{array}\right\}
$$

This is a system of two equations for two unknowns, u and v. Subtract both sides of the first equation by x, and subtract both sides of the second equation by y.

$$
\left.\begin{array}{l}
u=0 \\
v=0
\end{array}\right\}
$$

Therefore, $(0,0)=0+0 i$ is the unique additive identity for complex numbers.

Part (b)

$$
(x, y)(u, v)=(x, y)
$$

Multiplying the two complex numbers on the left side, we get

$$
(x u-y v, u y+x v)=(x, y) .
$$

In order for equality to hold, the real and imaginary parts of both sides must be equal.

$$
\left.\begin{array}{l}
x u-y v=x \\
u y+x v=y
\end{array}\right\}
$$

This is a system of two equations for two unknowns, u and v. Solve the first equation for y,

$$
\begin{gather*}
x u-x=y v \\
x(u-1)=y v \\
\frac{x(u-1)}{v}=y, \tag{1}
\end{gather*}
$$

and substitute it into the second equation.

$$
\begin{gathered}
u y+x v=y \\
u y-y=-x v \\
y(u-1)=-x v \\
{\left[\frac{x(u-1)}{v}\right](u-1)=-x v} \\
x(u-1)^{2}=-x v^{2} \\
x(u-1)^{2}+x v^{2}=0 \\
x\left[(u-1)^{2}+v^{2}\right]=0
\end{gathered}
$$

By the zero product property of real numbers,

$$
x=0 \quad \text { or } \quad(u-1)^{2}+v^{2}=0 .
$$

Plugging $x=0$ into equation (1) gives $y=0$, so in the special case that $(x, y)=(0,0), u$ and v are arbitrary. However, for general x and y, only $u=1$ and $v=0$ satisfy the equation on the right. Therefore, $(1,0)=1+0 i$ is the unique multiplicative identity for complex numbers.

